given a string, characters can be shuffled to make a palindrome. !
What is the minimum possible number of insertions to original string needed so that it will be a palindrome (after shuffling, if required).
What is the minimum possible number of insertions to original string needed so that it will be a palindrome (after shuffling, if required).
Input
T -> number of test cases
T number of Strings in different lines
T -> number of test cases
T number of Strings in different lines
import java.util.Arrays;
import java.io.InputStreamReader;
import java.io.BufferedReader;
public class Xsquare{
public static void main (String[] args) throws Exception{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int limit = Integer.parseInt(br.readLine());
int [] alphabets = new int[26];
while(limit-- >;0){
String input = br.readLine();
Arrays.fill(alphabets,0);
char [] inpChar = input.toCharArray();
int sum = 0;
for (int i=0;i<input.length();i++){
int pos = (int)inpChar[i] - (int)'a';
alphabets[pos]+=1;
}
for(int i=0;i<;26;i++){
if(alphabets[i]%2==0)
sum+=0;
else
sum+=1;
}
if(sum<=0)
sum=0;
else
sum-=1;
System.out.println(sum);
}
}
}
No comments:
Post a Comment