If a method throws NullPointerException in super class, can we override it with a method which throws RuntimeException?
Wednesday, 10 June 2015
Sunday, 10 May 2015
Try to Convey for Palindrome! ! ! ! !
given a string, characters can be shuffled to make a palindrome. !
What is the minimum possible number of insertions to original string needed so that it will be a palindrome (after shuffling, if required).
What is the minimum possible number of insertions to original string needed so that it will be a palindrome (after shuffling, if required).
Input
T -> number of test cases
T number of Strings in different lines
T -> number of test cases
T number of Strings in different lines
import java.util.Arrays;
import java.io.InputStreamReader;
import java.io.BufferedReader;
public class Xsquare{
public static void main (String[] args) throws Exception{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int limit = Integer.parseInt(br.readLine());
int [] alphabets = new int[26];
while(limit-- >;0){
String input = br.readLine();
Arrays.fill(alphabets,0);
char [] inpChar = input.toCharArray();
int sum = 0;
for (int i=0;i<input.length();i++){
int pos = (int)inpChar[i] - (int)'a';
alphabets[pos]+=1;
}
for(int i=0;i<;26;i++){
if(alphabets[i]%2==0)
sum+=0;
else
sum+=1;
}
if(sum<=0)
sum=0;
else
sum-=1;
System.out.println(sum);
}
}
}
Wednesday, 11 March 2015
MaxiMizing XOR
Problem Statement
Given two integers, L and R , find the maximal values of A xor B , where A and B satisfy the following condition:
Input Format
The input contains two lines; L is present in the first line and R in the second line.
Constraints
1≤L≤R≤10 3
Output Format
The maximal value as mentioned in the problem statement.
Sample Input
10
15
Sample Output
7
Explanation
The input tells us that L=10 and R=15 . All the pairs which comply to above condition are the following:
10⊕10=0
10⊕11=1
10⊕12=6
10⊕13=7
10⊕14=4
10⊕15=5
11⊕11=0
11⊕12=7
11⊕13=6
11⊕14=5
11⊕15=4
12⊕12=0
12⊕13=1
12⊕14=2
12⊕15=3
13⊕13=0
13⊕14=3
13⊕15=2
14⊕14=0
14⊕15=1
15⊕15=0
Here two pairs (10, 13) and (11, 12) have maximum xor value 7, and this is the answer.
Here two pairs (10, 13) and (11, 12) have maximum xor value 7, and this is the answer.
/*code written by Sudhakar Pandey */
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
#include <assert.h>
int maxXor(int l, int r) {
int i,j,max=0,p=0;
for(i=l;i<=r;i++)
{
for(j=i;j<=r;j++)
{
p=i^j;
if(p>max)
max=p;
}
}
return max;
}
int main() {
int res;
int l;
scanf("%d", &l);
int r;
scanf("%d", &r);
res = maxXor(l, r);
printf("%d", res);
return 0;
}
Subscribe to:
Posts (Atom)